tg-me.com/ds_interview_lib/841
Last Update:
Если увеличить объем обучающих данных, всегда ли модель машинного обучения будет работать лучше
Хотя увеличение данных часто улучшает обобщающую способность модели, есть несколько случаев, когда это не дает ожидаемого эффекта:
❗ Шумные или нерелевантные данные — если в новый набор включены некорректные, повторяющиеся или нерелевантные примеры, модель может запутаться и работать хуже.
❗ Неправильная архитектура — если модель недостаточно сложна (например, линейная при нелинейных зависимостях), даже большой объем данных не поможет.
❗ Выборка сдвинута — если новые данные не отражают реальные распределения (например, изображения кошек в наборе данных для собак), модель не улучшится.
BY Библиотека собеса по Data Science | вопросы с собеседований

Share with your friend now:
tg-me.com/ds_interview_lib/841